
 

 

 

 

1 

Theoretical Considerations and Empirical Predictions of the 
Pharmaco- and Population Dynamics of Heteroresistance 
Bruce R. Levin1,2,*, Brandon A. Berryhill1,3, Teresa Gil-Gil1, Joshua A. Manuel1, Andrew P. Smith1, 
Jacob E. Choby2,4, Dan I. Andersson5, David S. Weiss2,6,7, Fernando Baquero8  

1 Department of Biology, Emory University; Atlanta, Georgia, 30322, USA.  

2 Emory Antibiotic Resistance Center; Atlanta, Georgia, 30322, USA. 

3 Program in Microbiology and Molecular Genetics, Graduate Division of Biological and 
Biomedical Sciences, Laney Graduate School, Emory University; Atlanta, GA, 30322, USA.  

4 Emory Vaccine Center; Atlanta, Georgia, 30322, USA. 

5 Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, SE-
75123, Sweden. 

6 Division of Infectious Diseases, Department of Medicine, Emory University School of 
Medicine; Atlanta, GA, 30322, USA. 

7 Georgia Emerging Infections Program, Georgia Department of Public Health; Atlanta, GA, 
30322, USA. 

8 Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de 
Investigación Sanitaria, and Centro de Investigación Médica en Red, Epidemiología y Salud 
Pública (CIBERESP) Madrid, Spain. 

* Corresponding author: Bruce R. Levin. Email: blevin@emory.edu. Phone: (404)727-2956. 
Address: Room 2006, O. Wayne Rollins Research Center, Emory University, 1510 Clifton Road, 
Atlanta, Georgia, 30322, USA. 

Abstract (250) 

Antibiotics are considered one of the most important contributions to clinical medicine in the last 
100 years. Due to the use and overuse of these drugs, there have been increasing frequencies of 
infections with resistant pathogens. One form of resistance, heteroresistance, is particularly 
problematic; pathogens appear sensitive to a drug by common susceptibility tests. However, upon 
exposure to the antibiotic, resistance rapidly ascends, and treatment fails. To quantitatively explore 
the processes contributing to the emergence and ascent of resistance during treatment and the 
waning of resistance following cessation of treatment, we develop two distinct mathematical and 
computer-simulations models of heteroresistance.  In our analysis of the properties of these 
models, we consider the factors that determine the response to antibiotic-mediated selection. In 
one model, heteroresistance is progressive, with each resistant state sequentially generating a 
higher resistance level. In the other model, heteroresistance is non-progressive, with a susceptible 
population directly generating populations with different resistance levels. The conditions where 
resistance will ascend in the progressive model are narrower than those of the non-progressive 
model. The rates of reversion from the resistant to the sensitive states are critically dependent on 
the transition rates and the fitness cost of resistance. Our results demonstrate that the standard 
test used to identify heteroresistance is insufficient. The predictions of our models are consistent 
with empirical results. Our results demand a reevaluation of the definition and criteria employed to 
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identify heteroresistance. We recommend the definition of heteroresistance should include a 
consideration of the rate of return to susceptibility. 

Significance Statement (120 words) 

This mathematical modeling and computer-simulation study quantitatively explores two broadly 
different, previously undescribed, classes of heteroresistance. In our analysis of the properties of 
these models, we consider the response of heteroresistant populations to antibiotic exposure, 
focusing on the conditions where heteroresistance could lead to clinical treatment failure. We also 
provide novel consideration to the rate of reversion from a resistant to sensitive state. Our analysis 
illustrates the need to include the reversion rate from resistant to sensitive in the definition of 
heteroresistance and questions the sufficiency of the method currently used to identify 
heteroresistance. 
 
Main Text 
 
Introduction 
Pathogens resistant to existing antibiotics are a significant and increasing source of morbidity and 
mortality for humans and domestic animals (1, 2). Fundamental to the effective treatment of 
bacterial infections is choosing an antibiotic to which the pathogen is susceptible. The level of 
susceptibility is readily estimated by culture methods, both through automation via BioMerieux’s 
VITEK and similar devices (3-6), as well as by non-automated methods such as disk diffusion and 
Epsilon-diffusion tests (7, 8). By these methods, bacteria are classified as susceptible, 
intermediate, or resistant according to the international consensus guidelines from the Clinical and 
Laboratory Standards Institute (CLSI) and the European Committee on Antimicrobial Susceptibility 
Testing (EUCAST). These categorical descriptions determine whether an antibiotic will or will not 
be used for treatment. If an isolate appears susceptible to an antibiotic by these criteria, the drug 
would be presumed to be effective in treating infections with that pathogen. These in vitro 
susceptibility estimates are not sufficient as measures of antibiotic susceptibility if the treated 
bacteria are heteroresistant to that drug.  
 
A population of bacteria which is heteroresistant often appears susceptible to an antibiotic as 
assessed by the standard methods described above, but quickly becomes resistant upon 
confrontation with that drug due to the selection for and ascent of minority resistant populations. 
Heteroresistance (HR) is typically defined by the presence of one or more sub-populations at a 
frequency greater than 10-7 with a resistance level that crosses the breakpoint at or greater than 8 
times the susceptible main population (9). The canonical test for the presence of these sub-
populations, and thus for HR, is a Population Analysis Profile (PAP) test (10, 11). This protocol 
tests for bacterial growth at different concentrations of an antibiotic, thus revealing the presence or 
absence of resistant sub-populations.  
 
HR is clinically and epidemiology problematic due to the inherent instability of resistance. Within 
short order of the removal of the antibiotic, heteroresistant populations once again appear 
susceptible to the treating antibiotic by conventional testing procedures. This effect is most 
profound when considering the transmission of heteroresistant populations between individuals. 
Patients with heteroresistant infections transmit these seemingly antibiotic-susceptible bacteria to 
other patients, who may then fail treatment with the drug for which the bacteria are HR. This 
instability of resistance is intrinsic to HR but is not currently part of the definition and thus is 
considered in few reports of HR (12). 
 
In this report, we develop and analyze the properties of two mathematical and computer-simulation 
models that represent two extreme cases of HR, which we call progressive and non-progressive. 
Using these models, we explore the pharmaco- and population dynamic processes responsible for 
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HR and the factors which contribute to the instability of HR. The parameters of these models can 
be estimated, and the hypotheses generated therefrom tested and rejected in vitro and in vivo. 
 
Results 
 
Models of Heteroresistance 
 
We open this consideration of the pharmaco- and population dynamics of HR with a description of 
the two mathematical models employed. For both models of HR, we assume a Hill function for the 
relationship between the concentration of the antibiotic, the concentration of the limiting resource, 
and the rates of growth and death of the bacteria, known as the pharmacodynamics (13-15).  
 
Pharmacodynamics: 

In accord with the Hill function, the rate of growth or death of bacteria exposed to a given 
antibiotic concentration is given by Equation 1. 

 

 

  Equation 1 

Where A in µg/mL is the antibiotic concentration and r in µg/mL is the concentration of the resource 
which limits the growth of the population. vMAXi is the maximum growth rate in cells per hour of the 
bacteria of state i, where vMAXi>0. vMINi is the minimum growth rate per cell per hour, which is the 
maximum death rate when exposed to the antibiotic, where vMINi<0. MICi is the minimum inhibitory 
concentration of the antibiotic for the bacteria of state i in µg/mL. ki is the Hill coefficient for bacteria 
of state i. The greater the value of ki, the more acute the function. The function, 𝜓(𝑟) = !

(!#$)
, is the 

rate of growth in the absence of the antibiotic, where k is the resource concentration in µg/mL when 
the growth rate is half of its maximum value. 𝜓(𝑟) measures the physiological state of the bacteria; 
as the resource concentration declines the cells grow slower. We show in Supplemental Figure 1 
the Hill functions for four different bacterial populations with varying MICs and maximum growth 
rates.  

Diagrams of the Heteroresistance Models: 

The two models of heteroresistance used here are depicted in Figure 1. In the progressive model 
(Figure 1A) the increasingly resistant states are generated by a transition from a less resistant state 
to a more resistant state, and the more resistant states generate the less resistant states 
sequentially. In the non-progressive model (Figure 1B) the different resistant states are generated 
directly by a transition from the susceptible state, and the more resistant states transition directly 
back to the most sensitive state. 
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Figure 1. Diagram of the two models of HR. S (black) is the most antibiotic-sensitive state and 
the state with the highest fitness. We assume the level of antibiotic resistance increases as the 
fitness decreases from state R1 (blue) to R2 (green) to R3 (red). Transitions occur between states 
at potentially different rates of µ (where µij is the transition from i to j). Panel A is a diagram of the 
progressive model and panel B is a diagram of the non-progressive model. 
 

The Progressive Model: 

In this model (Figure 1A), the bacteria transition between four different states: sensitive, S, and 
increasingly resistant, R1, R2, R3, which are the designations and densities in cells per mL of 
bacteria of these different states. Cells of the S state transition to R1, R1 transitions to R2, and R2 
transitions to R3 at rates µS1, µR12, and µR23 per cell per hour, respectively. Cells of resistant states 
progressively transition to the less resistant states, R3 to R2, R2 to R1, and R1 to S, with rates 
µR32, µR21, and µR1S per cell per hour. We simulate these transitions with a Monte Carlo process 
(16). A random number x (0 ≤ x ≤1) from a rectangular distribution is generated. If x is less than the 
product of the number of cells in the generating state (S, the density time the volume of the vessel, 
Vol), the transition rate (µ) and the step size (dt) of the Euler method (17) employed for solving 
differential equation, for example if x < S*µSR1*dt*Vol, then MSR1 cells are added to the R1 
population and removed from the S population where MSR1=1/(dt*Vol). With these definitions, 
assumptions, and the parameters defined and presented in Supplemental Table 1, the rates of 
change in the densities of the different populations will be given by: 
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The Non-progressive Model: 

In this model (Figure 1B) all the resistant states, R1, R2, and R3 are derived from the susceptible 
state and, by transition, return directly to the susceptible state, S. The rates of transition from state 
S are respectively µSR1, µSR2, and µSR3 per cell per hour. The rates of return to the susceptible state 
are µR1S, µR2S, and µR3S per cell per hour. The transitions between states are via a Monte Carlo 
process (16), using a routine like that for the progressive model. When transients from S to the 
different R states are generated (MSR1, MSR2, and MSR3), 1/(dt*Vol) are added to the R1, R2 
and R3 populations and are removed from the S population. When transients from the R1, R2, and 
R3 populations are generated (MR1S, MR2S and MR3S), 1/(dt*Vol) are added to the S population 
and removed from the R1, R2, and R3 populations, respectively. With these definitions, 
assumptions, and the parameters defined and presented in Table S1 the rates of change in the 
densities of the different populations are given by: 

 

 

 

 

 

 

 

 

Simulated Population Dynamics of Heteroresistance 

Here we consider the population dynamics of heteroresistance with the distributions of the different 
resistant states generated from single cells grown up to full densities for the progressive and non-
progressive models with four transition rates (Figure 2). We further consider a greater range of 
transition rates for the non-progressive model to determine the minimum rate for which we generate 
sufficiently large minority populations in Supplemental Figure 2A-C. 

dr
dt

= −e iψ (r) i (vS i S + v1 i R1+ v2 i R2+ v3 i R3)

dS
dt

= S iΠS (r,A) + MR1S − MSR1

dR1
dt

= R1iΠR1(r,A) + MSR1 + MR21− MR12− MR1S

dR2
dt

= R2 iΠR2(r,A) + MR12 + MR32− MR21− MR23

dR3
dt

= R2 iΠR3(r,A) + MR23 − MR32

dr
dt

= −e iψ (r) i (vs i S + v1 i R1+ v2 i R2+ v3 i R3)

dS
dt

= S iΠS (r,A) − MSR1− MSR2− MSR3+ MR1S + MR2S + MR3S

dR1
dt

= R1iΠR1(r,A) + MSR1 − MR1S

dR2
dt

= R2 iΠR2(r,A) + MSR2− MR2S

dR3
dt

= R2 iΠR3(r,A) + MSR3 − MR3S

Equation 2 
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Figure 2. Distribution of stationary phase densities when grown up from a single cell of S. 
Shown on the left (A, B, C, and D) are the means and standard deviations of the stationary phase 
densities of the S (black), R1 (blue), R2 (green), and R3 (red) populations from five independent 
runs with the progressive model with different transition rates, µ=10-5, 10-4, 10-3, and 10-2 per cell 
per hour for A, B, C, and D, respectively. On the right, E, F, G, and H are the corresponding 
distributions for runs made with the non-progressive model with these respective transition rate 
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For the progressive model, only in the runs with the highest transition rates, µ=10-2 and µ=10-3 per 
cell per hour, is the subpopulation with the highest resistance level, R3, present. A very different 
situation obtains for the non-progressive model, as at every transition rate the R3 population is 
present. We also consider the effect that the relative fitness cost of each state has on these 
stationary phase densities (Supplemental Figure 3) and find modest differences in these 
distributions.  

Using these same parameters for both models, another difference can be seen between the 
progressive and non-progressive models in the Population Analysis Profile (PAP) tests of each 
(Figure 3). For these PAP tests, we calculate the ratio of the number of cells generated at a 
particular antibiotic concentration compared to the number of cells present when there is no 
antibiotic (N(A)/N(0)) for 0, 1, 2, 4, 8, and 16 times the MIC of the susceptible population. 

The PAP test results anticipated from the progressive model are very different than those 
anticipated from the non-progressive model, two extreme HR cases. The presence of four sub-
populations with different MICs is apparent from the PAP test of the progressive model with the 
parameters considered. For the non-progressive model, the differences in the relative densities of 
the sub-populations are too low to be detected by a PAP test performed in the lab. In general, the 
plateaus shown in Figure 3 A and B are sharper and more dramatic than would be seen in the lab. 
This is a consequence of having only four resistant states. Moreover, using the standard HR criteria 
of having a sub-population with an MIC of >8 times at a frequency of at least 10-7, the progressive 
model only meets these criteria at high transition rates (exceeding 10-4). On the other hand, the 
non-progressive model meets these criteria at transition rates as low as 10-7 (Supplemental Figure 
2D).  

 

Figure 3. Population Analysis Profile (PAP) tests. The ratio of the density of the number of 
bacteria surviving at an antibiotic concentration relative to that surviving in the absence of the 
antibiotic for different transition rates. Black µ=10-2, blue µ=10-3, green µ=10-4, and red µ=10-5 per 
cell per hour. Panel A is the PAP test using the progressive model and Panel B is the PAP test 
using the non-progressive model 

To explore how these models differ in their response to antibiotic treatment, we follow the changes 
in the densities and MICs of heteroresistant populations exposed to two antibiotic concentrations 
(5 µg/mL and 10 µg/mL corresponding to 5x and 10x the MIC of the susceptible population) when 
µ=10-2 and µ=10-5 per cell per hour (Supplemental Figure 4). We initiate these simulations with 
1/100 of the stationary phase densities of the different states anticipated from the heteroresistant 
populations depicted in Figure 2D and A and Figure 2H and E for the progressive and non-
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progressive models of heteroresistance, respectively. In Supplemental Figure 5, we consider the 
effect that the fitness cost of resistance has on these dynamics and find the effect modest at best, 
just slowing the response time to the antibiotic. 

There are apparent differences in the bacterial response to antibiotics between the progressive and 
non-progressive models of HR. For both models, when µ=10-2 per cell per hour, the R3 population 
comes to dominate and the MIC increases to the maximum (15 µg/mL), though with the higher 
concentration of the drug, it takes longer for the R3 population to become dominant. With the lower 
transition rate of µ=10-5 per cell per hour, at 5 µg/mL of antibiotic the R2 population comes to 
dominate in the progressive model and the R3 population remains minor. At this same transition 
rate and at 10 µg/mL, resistance does not evolve, and the bacterial populations are lost. In both 
cases, the MIC does increase but does not go to the maximum value. For these conditions, in the 
non-progressive model, sub-populations are always able to respond to the antibiotic and are never 
eliminated.  

Upon removal of the antibiotic, the heteroresistant bacterial population reverts to the sensitive state. 
This reversion is the case for both the progressive and non-progressive models of HR considered 
here. To illustrate this and elucidate the relative contributions of the rates of transition between 
states and the fitness cost of resistance (as measured by the growth rates) to the dynamics and 
the time needed to restore susceptibility, we use serial transfer forms of the progressive and non-
progressive versions of the HR models. In these simulations, the populations are grown for 24 
hours, diluted by a factor of 100, and fresh resources added. In Figure 4, we present the results of 
simulations of the changes in the densities of the susceptible and resistant populations as well as 
the change in average MIC in serial transfer following the removal of the antibiotics. These serial 
transfer simulations were initiated with 107 bacteria per mL of the highest resistance level, R3. We 
consider two major conditions: one where the fitness cost of resistance is high and another where 
the fitness cost of resistance is low. In the supplemental materials we consider the dynamics of 
reversion when a set of even higher fitness costs are used (Supplemental Figure 6). 

 

Figure 4. Response of the two heteroresistant models to the removal of antibiotics. Changes 
in the densities of the susceptible and resistant populations in the absence of the antibiotic and 
changes in the average MIC. S (black), R1 (blue), R2 (green), and R3 (red). Simulations with the 
high fitness cost were run for 1200 hours (50 days), while simulations with the low fitness cost were 
run for 4800 hours (200 days) 
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In the absence of antibiotics, the populations become increasingly dominated by more susceptible 
populations for both the progressive and non-progressive models of HR. This change in the 
composition of the populations is also reflected in a decline in the average MIC, approaching the 
level of the susceptible population. With the same fitness parameter and transition rates between 
states, µ, the rate of return to the susceptible state is greater for the non-progressive model than 
the progressive model. For both models, the rate of return to the sensitive state is proportional to 
the transition rate between states, µ, and the relative fitness cost of resistance. Notably, the new 
apparent equilibria obtained for both models differ substantially. In the progressive model, the most 
resistant populations are in continuous decline and will ultimately be lost or nearly so, while in the 
non-progressive model, all resistant populations are present at roughly equal frequency and appear 
to be in equilibrium. Of note is the vast difference in the time needed for the susceptible population 
to come to dominate; we list these times in Supplemental Table 2. 

 

Discussion  

To elucidate the factors that govern the response of heteroresistant populations to antibiotics, we 
use mathematical and computer-simulation models to explore quantitatively: i) the factors 
responsible for generating the distribution of resistant sub-populations, ii) the response of 
heteroresistant populations to different concentrations of antibiotics, and iii) the amount of time 
required for an antibiotic-resistant heteroresistant population to become susceptible again when 
the treating antibiotic is removed.  

We consider two models of heteroresistance (HR), which we call progressive and non-progressive. 
In both models, there are one or more sub-populations with different levels of resistance. In the 
progressive model, the more susceptible state transitions sequentially to the more resistant states, 
which in turn transition back to the less resistant states in the same sequence. In the non-
progressive model, the susceptible population transitions directly to all the resistant states from the 
susceptible state before transitioning back directly to the susceptible state. In both models, the 
transition rates between states and the relative fitness cost of being resistant determine the 
distribution of the resistant populations in the absence of and in response to antibiotics. 

The difference in the distribution of resistant states between these models with the parameters 
used is apparent with a Population Analysis Profile (PAP) test. With the progressive model, there 
are different resistance levels with distinct relative densities, which decline as the concentration of 
the antibiotic increases. With the non-progressive model, although there are multiple sub-
populations with different levels of resistance, they likely would not appear as separate populations 
in a PAP test. The PAP test of the non-progressive HR looks more like that which would obtain with 
only two resistance levels, sensitive and resistant. However, the PAP tests are insufficient to 
differentiate the two models of HR, as there are conditions where non-progressive HR would look 
progressive (Supplemental Figure 7).  

The models are also distinct in how they respond to antibiotics. In the progressive model, if the 
drug concentration is above the MIC of any of the sub-populations and the transition rate is low, 
the most resistant population can fail to emerge and ascend; this is true even though the drug 
concentration is still less than the MIC of the most resistant population. With the non-progressive 
model, the highest level of resistance will always emerge, no matter the transition rate. There are 
also differences in the population dynamics of each model when the antibiotics are removed. In the 
progressive model, the average MIC will return to that of the most susceptible population, and the 
most resistant populations will be lost. In contrast, in the non-progressive model, the average MIC 
will not decrease to that of the most susceptible population, and all the resistant sub-populations 
will remain present. One implication of this is when confronted with antibiotics, a heteroresistant 
population which is non-progressive will respond to the drugs more consistently and more rapidly 
than a progressive heteroresistant population. 
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The standard for detecting and defining a strain as heteroresistant is the PAP test which requires 
sub-populations to be more frequent than 10-7 and to have an MIC >8x that of the susceptible main 
population (9). These tests are cumbersome, costly, and are unlikely to be performed in clinical 
microbiology labs. Most critically, our results demonstrate that the PAP test is not sufficient to detect 
HR. There are conditions with the progressive and non-progressive models where populations 
would fail to meet the criteria set by the PAP test but would still survive confrontation with high 
doses of antibiotics – a false negative. There are also conditions where stable resistance would 
meet the HR criteria set by the PAP test – a false positive (Supplemental Figure 8). Moreover, there 
are conditions that would be called HR despite requiring thousands of hours to return to a sensitive 
MIC. To address this issue, although not in the current definition of HR, we recommend revisiting 
this definition to include the rate at which the MIC of potentially heteroresistant strains return to a 
susceptible MIC (12). This is especially important, as the epidemiological risk of HR is the rapid 
return to a seemingly sensitive state, and as demonstrated experimentally, this can happen in less 
than 50 generations for certain types of HR (12, 18, 19).  

At this juncture, it is not clear how important HR is clinically even though animal experiments (20, 
21) and some clinical studies suggest that it can increase the risk of persistent bacteremia, lead to 
longer hospital stays, and increase mortality (12). We argue that within a single infected individual, 
the distinction between the emergence of stable resistance and HR is manifest in the risk of 
treatment failure. With both mechanisms, antibiotics can select for the ascent of resistant sub-
populations which will result in reduced treatment efficacy or even treatment failure, likely leading 
clinicians to change the treating drug in both cases. This risk of treatment failure is probabilistic in 
HR, as it is in stable resistance, due to other factors not considered here such as the host's immune 
system, the compartmental heterogeneity of infection, and the local antibiotic concentrations. Due 
to the combination of these factors, treatment of a heteroresistant strain with a drug for which it is 
HR, will not necessarily lead to treatment failure. One distinction between HR and stable resistance 
is the rapid reversion of a heteroresistant population from a resistant to a susceptible state. This 
reversion has an additional clinical implication when considering infection transmission between 
individuals. Should an individual be infected with bacteria that are stably resistant to a drug, that 
resistance would appear on an assay such as the VITEK, and the drug for which they are resistant 
would not be used. If that individual is infected with heteroresistant bacteria, it would initially appear 
sensitive to a treating drug, but resistance could rapidly ascend. Then if that individual passes the 
infection on to another individual, due to the transient nature of HR, that infection would once again 
appear susceptible to the drug and once again the wrong drug would be chosen to treat the 
infection.  

Although this study is purely theoretical, the parameters used in these models can be estimated 
experimentally with different species of bacteria and antibiotics of different classes. The hypotheses 
generated herein can be tested in vitro and, most importantly, can be rejected. There exists 
evidence supporting these two classes of HR, primarily in the form of PAP tests of known 
heteroresistant strains as exemplified by data shown in Supplemental Figure 9. A key objective for 
future experimental work is to determine how the actual mechanisms that can generate an unstable 
heteroresistant phenotype relate to these theoretical models. At present, we know of two main 
mechanisms that can generate HR: (i) alterations in copy number of resistance genes or their 
regulators by either tandem amplifications and/or alterations in plasmid copy number (12, 18, 22, 
23), and (ii) regular point mutations that occur at a high frequency (18, 24-26). It is likely that 
mutational HR is best described by the non-progressive model where instability and reversion to 
susceptibility is driven by compensatory mutations that concomitantly reduce the fitness costs of 
the resistance mutations and lead to the loss of resistance (27-29). For gene amplification 
mechanisms it is less clear which theoretical model best describes their behavior since these 
mechanisms could have properties compatible with either model alone or a combination of the two, 
depending on the actual mechanism by which the amplifications are formed and lost. Further 
experimental work is needed to clarify these points. Finally, an unstable and transient resistant 
minority population could potentially also be generated by other types of mechanisms than those 
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presently identified, including inducible resistances, epigenetic changes, and gene conversion 
events (30). In the supplemental text and Supplemental Table 3, we provide examples of HR 
mechanisms across several drug classes, predict which model of HR would most accurately 
pertain, and discuss the clinical implications. 

There are, of course, caveats to consider with our models. Firstly, our models are not mechanistic 
and do not consider the genetic basis of progressive versus non-progressive HR and, as mentioned 
above, there are likely cases where certain mechanisms (e.g. gene amplification) could look either 
progressive, non-progressive, or somewhere in between depending on their specific mechanistic 
properties. Secondly, our models only include three resistant states, and these resistant states 
either do not transition between each other (non-progressive) or transition sequentially 
(progressive) – two extreme cases. Lastly, as with all pharmacodynamic studies, some elements 
have been neglected from these models, as mentioned previously, the host's immune system and 
the compartmental heterogeneity of infection such as biofilms and abscesses, as well as variation 
in local antibiotic concentrations, all of which prohibit in vitro models and studies from making solid 
clinical predictions. All in all, a clear next step would be to test these predictions in vitro and then 
move to an in vivo model system. Crucially, we need to develop an understanding of how the 
definition of HR matches with the clinical implications, specifically considering the frequency and 
MIC cutoffs previously defined.  

Materials and Methods 

Numerical Solutions (Simulations): For our numerical analysis of the coupled, ordered differential 
equations presented (Equations 2-11) we used Berkeley Madonna with the parameters presented 
in Table S1. Copies of the Berkeley Madonna programs used for these simulations are available at 
www.eclf.net. 

Bacteria: Enterobacter cloacae Mu208 is a carbapenem-resistant isolate collected by the Georgia 
Emerging Infections Program Multi-site Gram-negative Surveillance Initiative and described 
previously (21). Burkholderia cepacia complex isolate JC8 is a cystic fibrosis patient isolate 
collected by the Georgia Emerging Infections Program Multi-site Gram-negative Surveillance 
Initiative. Escherichia coli MG1655 was obtained from the Levin Lab’s bacterial collection. 

Rifampin Population Analysis Profile tests: Single colonies of E. coli MG1655 were inoculated into 
10 mL lysogeny broth (BD, USA, Product #244610) and grown overnight at 37°C with shaking. 
Cultures were serially diluted in saline and all dilutions (100 to 10-7) plated on LB agar plates (BD, 
USA, Product #244510) containing 0, 1, 2, 4, 8, and 16 times the MIC of rifampin (Thermo Fisher, 
USA, Product #J60836.03). Plates were grown at 37°C for 48 hours before the density of surviving 
colonies was estimated. 

Burkholderia and Enterobacter Population Analysis Profile tests: Single colonies of B. cepacia 
complex isolate JC8 and E. cloacae Mu208 were inoculated into 1.5 mL Mueller-Hinton broth (BD, 
USA, Product #275730) and cultures were grown overnight at 37°C with shaking. Cultures were 
serially diluted in phosphate-buffered saline and 10 µL of each dilution was spotted on Mueller-
Hinton agar (BD, USA, Product #225250) plates containing 0, 0·125, 0·25, 0·5, 1, 2, and 4 times 
the breakpoint concentration of each antibiotic. Antibiotics used were ticarcillin disodium (BioVision, 
USA, Product #B1536) with clavulanate potassium salt (Cayman Chemical Company, USA, Procut 
#19456), amikacin sulfate (AstaTech, USA, Product # 40003), colistin sulfate salt (Sigma-Aldrich, 
USA, Product # C4461), and fosfomycin disodium salt (TCI America, USA, Product # F0889). For 
Mu208 on fosfomycin, broth and agar included 25 µg/mL glucose-6-phosphate (Sigma-Aldrich, 
USA, Product #10127647001). Plates were maintained at 37°C overnight for Mu208 and for 36-60 
hours for JC8.  
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